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Abstract. In this paper, the variational iteration method (VIM) and the Adomian 
decomposition method (ADM) are applied to solve numerically the focusing Manakov systems 
of coupled nonlinear Schrödinger equations. The accuracy of the methods are verified by 
ensuring that the conserved quantities remain almost constant. The results show that VIM is 
much easier, more convenient,  more stable and efficient than ADM. 

1.  Introduction  
The focusing Manakov systems in 1+1 dimensions (i.e., one space and one time dimension) are 
coupled systems of nonlinear Schrödinger equations models the propagation of the average fields of a 
polarized wave in a randomly birefringent optical fiber. The qualitative natures of the unstable 
manifolds of linearly unstable plane wave solutions have been examined in [14] and [17]. For more 
details on the coupled nonlinear Schrödinger equations and the focusing Manakov systems see [6], 
[11], [21], [24] and the references cited therein.  Recently much attentions have been devoted to the 
numerical methods which do not require discretization of space-time variables or linearization of the 
nonlinear equations, among which are the Adomian decomposition method (ADM) ( [1], [4], [7], [16] ) 
and the variational iteration method (VIM) which is suggested by Ji- Huan He ([2], [3], [8]-[10], [19] 
and the reference cited therein) and it based on Lagrange multiplier method.  Many authors are pointed 
out  that VIM has merits over other methods and can overcome the difficulties arising in calculation of 
Adomian polynomials in the ADM (see [5], [13], [18] and the references therein).   

The main aim of this paper is to develop VIM and ADM to solve the following Manakov system of 
nonlinear coupled one dimension partial differential equations [15], [20], [21]:  

0tRx,  0 u )2|v|  2|u| ( xxu 5.0tu i , ≥∈=+++ q .                     (1.1)  
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     0,  v)2|v|  2|u|  ( xx v5.0t vi =+++ q
                                              (1.2) 

with initial conditions  and homogenous boundary conditions. 
There has been a lot of previous work on the solitary wave equations to system (1.1)-(1.2) under the 
infinite boundary conditions  at 

(x)0vv(x,0)(x),0uu(x,0) ==

0v0,u →→ ∞→|x|  (see [20]-[21] and the references therein). 
An important goal of the present work is to show that the developed VIM which remarkable merits 
over other methods is applicable to solve numerically the focusing Manakov systems, i.e., 1q += , in 
the above equations. 

2.  Implementation of VIM and ADM     

2.1.  Implementation of VIM  
Consider the system (1.1)-(1.2) and by using VIM in the region 0][t]xx[xR RL >×<<=  with its 
boundary  which consists of the ordinates R∂ RL xx,xx == ,  we can construct the correction 
variational functional equations as following:   

    ,    (3.1)  

∫ +−−+=+
t

0
 dτ ]nû ) 2 |nv̂|    2|nû| ( inxxû 5.0nu )[(1λt)(x,nut)(x,1nu  iττ

     ,      (3.2) 

∫ +−−+=+

t

0
dτ ]nv̂ ) 2 |nv̂|  2|nû| ( inxxv̂   5.0n v)[(2λt)(x,nvt)(x,1nv iττ

where 1λ and 2λ  are the general  Lagrange multipliers,  denote restricted 

variations   
nv̂,nxxv̂ , nû  ,nxxû

i.e., 0nv̂ δ nxxv̂ δ nû δnxxû δ ==== . Making the above correction functional stationary, we 

can obtain the following stationary conditions:      

.0|)(21   ,  0|)(11   ,  0)(2   , 0)(1 ==+==+== tt ττλττλτλτλ &&
 

The Lagrange multiplier, therefore, can be defined in the following form:  . 1)(2)(1 −== τλτλ           

(3.3)   Substituting from (3.3) into the correction functional equations (3.1) and (3.2) result the 
following iteration formulas:    

                 (3.4)  

∫ +−−−=+

t

0
, dτ ]nu ) 2|nv|  2|nu| ( inxxu 5.0nτ[u t)(x,nut)(x,1nu  i

                          (3.5) 

. 
t

0
dτ ]n v)2|nv|  2|nu| ( inxx v 5.0nτ[v t)(x,nvt)(x,1nv i∫ +−−−=+

Using the following initial approximations: 

 
, )  x)α2cos( ε(10au(x,0)t)(x,0u −==
                                                    (3.6) 
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)  x)α2cos( ε(10bv(x,0)t)(x,0v +==

,                                                   (3.7) 

where are the initial amplitudes of the two perturbed periodic waves, respectively, 00 b,a 1<<ε  is a 
small parameter which represents the strength of the perturbation and α  is the wave number of the 
perturbation. We can obtain directly the components  and  of the solution:     t)(x,1u t)(x,1v

; ) ] ] ]  x)α2cos( ε )2
0b2

0(a2
0b2

0a [3              

 x)α2cos( i ε2α i2
0b i2

0a i 3 [  x)α2cos( ε)2
0b2

0(a i- [t 0a (t)(x,0ut)(x,1u

+−−

−−−++−=

 

; ) ] ] ]  x)α2cos( ε )2
0b2

0(a2
0b32

0a [              

 x)α2cos( i ε2α i2
0b i 32

0a i [  x)α2cos( ε)2
0b2

0(a [-it 0b (t)(x,0vt)(x,1v

+−−

++−++−=

  
The rest of components of the iterative formulas (3.4) and (3.5)  were obtained in the same manner 
using the Mathematica Package. The numerical  behavior of the solutions by VIM for different time 
values  in the region 02t0 ≤≤ 115x0 ≤≤  are shown in Figure (1), where the approximated wave 
solutions | | is represented in the top, and | | is  represented in the bottom of Fig.(1). The 
numerical results are obtained by using two terms only from the iterative formulas (3.4)-(3.5) where 

 

t)u(x, t)v(x,

,0  ,0  0.1 0.08 ba == , 0.05=α  0.05=ε . We achieved a very good approximation for the solution 
of the system. It is evident that the overall errors can be made smaller by adding new terms from the 
iteration formulas. 

2.2.  Implementation of ADM 
To apply ADM for the focusing Manakov system in one dimension,  first we rewrite the equations  
(1.1)-(1.2) in the following operator form: 

                                                                 (3.8) 
,u  )2|v|  2|u| ( i xxu i 5.0utL ++=

                                                                          (3.9) 
,  v)2|v|  2|u| ( i xx vi 5.0vtL ++=

where the notation   , 
ttL
∂
∂

= symbolize, linear differential operator. By using the inverse operator, 

we can re-write (3.8)-(3.9) in the following form:                                    

                    
, v)](u,[NtL i]xxu[tL  i 5.0u(x,0)t)u(x,

1
11 −− ++=

                                     (3.10) 

                     
, v)](u,[NtL i]xxv[tL  i 5.0v(x,0)t)v(x,

2
11 −− ++=

                                   (3.11)  

where the inverse operator  is defined by1
tL− ∫=− t

0
dt )()(tL ..1  and the nonlinear  terms 

and  v)(u,N
1
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v)(u,N
2

 are defined by:                (3.12)  v,)2|v|  2|u| ( v)(u,N    ,u  )2|v|  2|u| (v)(u,N
21

+=+=

The  solutions  and  can be decomposed by an infinite series as follows:    t)u(x, t)v(x,

                   

∑
∞

=
=∑

∞

=
=

0i
t)(x,ivt)(x,         v,  

0i
t)(x,iut)u(x,

,                                     (3.13)   

where  and  are the components of   and  that will elegantly determined, 

and the nonlinear terms decomposed by the following  infinite series:  

t)(x,iu t)(x,iv t)u(x, t)v(x,

                            

  . 1,2k       , 
0m

kmAv)(u,N
k

=∑
∞

=
=

                                   (3.14) 

where 1,2k   , kmA =  are called Adomian’s polynomials and definite by:                                   

                

0i      ,   0λ] )
m

0i
iviλ,

m

0i
iuiλ(kN

mdλ

md
[ 

m!
1

kmA ≥=∑
=

∑
=

=

.                                 (3.15) 

From the above considerations, the decomposition method defines the components  and  for  

, by the following recursive relationships:         
iu iv

0i ≥

                             (3.16) 
. 0n   , )1n(AtL i )nxx(utL i 5.0t)(x,1nu    , u(x,0)t)(x,0u 11 ≥+=+= −−

                              (3.17) 
. 0n   , )2n(AtL i )nxx(vtL i 5.0t)(x,1n    v, v(x,0)t)(x,0v 11 ≥+=+= −−

This will enable us to determine the components  and  recurrently. However, in many cases 
the exact solution in a closed form may be obtained.  For numerical comparisons purpose, we 
construct the solutions  and : 

nu nv

t)u(x, t)v(x, Lim Ψ u(x,t) , Lim Θ v(x,t)n nn n= =→∞ →∞ ,  where 

                                                             (3.18) 

n 1 n 1
Ψ (x,t) u (x,t),  Θ (x,t) v (x,t) , i 0.n ni i

i 0 i 0

− −
= =∑ ∑

= =
≥

Now, we can obtain the first  Adomian’s polynomials of 1,2k  , kmA =   using equation (3.15) as 

follows:    

                                             (3.19)    

2 2 2 2
0 0 0 0

2 2
0 0 0 1 0 1

2 2
0 0 0 1 0 1

A q u ( | | v )  ,          A q v (  | | v )  ,10 200 0
A q u (  | | v )  2q u ( | | | v | v ) ,       11 1 0
A q v (  | | v )  2q v (  | | | v | v ) ,   21 1 0

u | | u | |

u | | u | u | | |

u | | u | u | | |

= + = +

= + +

= + +

+

+

and so on.  Staring with the following initial approximation: 
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, )  x)α2cos( ε(10at)(x,0u −=
     

, )  x)α2cos( ε(10bt)(x,0v +=
 

and  by recurrence formulas (3.16), (3.17) we can obtain directly the components ,  of the 

solution:    
1u 1v

, ] ] ] ) x α 2cos( ε )b(a                

b -a [3  x)α 2cos( ε  i2αb  ia  i 3- [  x)α 2cos( ε )b(a  i [t 0at)(x,1u

2
0

2
0

2
0

2
0

 i2
0

2
0

2
0

2
0

+

−++++ +=
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, ] ] ] ) x α 2cos( ε )b(a3b -[a              

  x)α 2cos( ε i  2αb  ia i - [  x)α 2cos( ε  )b(a  i [t 0b t)(x,1v

2
0

2
0

2
0

2
0

 i 2
0

32
0

2
0

2
0
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The rest of components of the iterative formulas (3.16) and (3.17)  were obtained in the same 

manner using the Mathematica Package. The numerical behavior of the solutions by ADM are shown 
in  the same Figure (1), The numerical results are obtained by using two terms only from the iterative 
formulas (3.16)-(3.17). We achieved a very good approximation for the solution of the system. It is 
evident that the overall errors can be made smaller by adding new terms from the iteration formulas. 

3.  Conserved Quantities in One Space Variable  
To illustrate whether the proposed methods lead to higher accuracy in one dimension, we will use the 
same procedure as in Sun and Qin [17] which emphasize that a good numerical scheme should have 
excellent long-time numerical behavior, as well as energy conservation property.  To monitor the 
accuracy of the VIM and ADM, we consider the following two conserved quantities: 

                   and                     (3.20) 
∫

−
=

s/2

s/2
dx2|t)u(x, |  E(u) ∫

−
=

s/2

s/2
dx2|t) v(x,|  E(v)

where π40)/π2( == αs  ( for 0.05=α  ) is the spatial period of the solution [20]. Table 1 
shows the quantity E(v)E(u) + for various times by VIM and ADM. The nearly constant values of 

 show that both  methods are working well. E(v)E(u) +
Table 1. 

Time VIM:     E(v)E(u) +  ADM:     E(v)E(u) +  

2 2.05599 2.05599 

4 2.06258 2.06258 

6 2.07356 2.07356 

8 2.08894 2.08894 

10 2.10871 2.10871 

12 2.13287 2.13287 

14 2.16143 2.16143 

16 2.19438 2.19438 

Now, by using the stability analysis suggested by Tan and Boyd [20], the wave solution is linearly 
stable  
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only if the perturbation wave number α  is above the critical value )a 2(cα  2
0

b2
0
+= ; otherwise 

the  
wave solution is unstable.  By choosing  the constants  0.05α   , 0.10b   ,  0.080a === , we 

find that =0.181108, therefore, the wave solution in this case is unstable. The amplitude of u  and 
 undergoes oscillations between the near-uniform state and the one-hume state ( see Fig. 1). 

cα
v

 

 
 

Figure 1:  Long-time evolution of the wave solution |u(x, t)| and |v(x, t)| 

4.  Conclusions   
The VIM and the ADM were used to find numerical solutions of  the focusing Manakov systems of 
coupled nonlinear Schrödinger equations in one space variable. It may be concluded that there are 
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many advantages of these methods, the main advantages are the fast convergence to the solution, does 
not require discretizations of space and time variables, no need to solve nonlinear system of equations 
as in finite element method and finite difference method, then, no necessity of large computer memory. 
The accuracy of both methods is verified for the focusing Manakov systems by ensuring that the 
conserved quantities remain almost constant. A clear conclusion can be draw from the numerical 
results that the VIM is easier and faster than the ADM, moreover it overcomes the difficulty arising in 
calculating Adomian’s polynomials in  ADM. 
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